
Software Development Process

Manuel Rodriguez-Martinez, Ph.D.

Objectives

Discuss issues associated with software
development process

Organizational

Procedural

Identify best practices to increase your success Identify best practices to increase your success
rate

2

Part I: Organizational Issues

Before taking any project and writing any code
ask yourself:

Is my organization ready to develop software?

Some people believe good developers is all you
needneed

Reality: talent is over rated.

Discipline is the key to success

Joel Spolsky – former Microsoft Excel PM

Internet blog with many rule of thumbs and ideas

Some are not right IMO

3

Joel Test: 12 Steps to better code

Test 1: Do you use source control?

SVN, CVS

Manage code and integrate with the rest

Keep backups for free …

Test 2: Can you make a build in one step?Test 2: Can you make a build in one step?

Start you application top down

Phase 1 of DB Project

No mystery to compile, deploy and run application

Most IDE create a project that runs!

CMSC 435 @ UMD – Software Engineering course

Deliverable –software application with one click installer

4

Joel Test: 12 Steps to better code

Test 3: Do you make daily builds?

Make sure you new code

Works and does not breaks someone else code

ICOM 5016 last day integration syndrome

Do it when people are around to fix it Do it when people are around to fix it

Rotate who is responsible for the build

But if someone breaks it that person should fix it

Test 4: Do you have a bug database?

Track know bugs

Pick the ones to fix now and the ones to be left for future

Track cause, buggy behavior, expected behavior, owner

5

Joel Test: 12 Steps to better code

Test 5: Do you fix bugs before writing new
code?

Critical bugs must be fixed ASAP

Ex. Null pointers, number overflows, etc.

You know what are doing and is easier to track what You know what are doing and is easier to track what
happened

In one week you will forget what the code was doing …

Lots of unfixed bugs == unreliable schedule to finish

ICOM Software Gurus ☺

Write 5000 lines of undebugged and untested code

Expect to be able to fix them a week before deadline

Often they get bored and quit the project (go to play games)

6

Joel Test: 12 Steps to better code

Test 6: Do you have an up-to-date schedule?

Schedule is not carved in stone

Each developer must update time to end task

Make sure debugging and testing in included

Do not let manager change time!

Project will fail! Project will fail!

Cut luxury features in order to meet deadline

Test 7: Do you have a spec?

Functional specification – what the software will do?

Not UML, not layer diagram

Text and possible GUI sketch

What will happen when people use the code

No spec == guessing

7

Joel Test: 12 Steps to better code

Test 7: Do you have a spec?

Spec helps you “debug application”

What is needed and what is not needed

Right vs. wrong behavior

Spec helps you control schedule

Identify required vs. nice to have (luxury) features

Test 8: Do programmers have quiet working conditions?

People like to concentrate and write code (inspiration)

Distractions

Phone

Constant questions about schedule or windows crash

Far away bath rooms / food / coffee

Co-worker interruptions

8

Joel Test: 12 Steps to better code

Test 8: Do programmers have quiet working
conditions?

One minute interruption == 15 minutes of lost work

Give people their own desk with their machine

Test 9: Do you use the best tools money can Test 9: Do you use the best tools money can
buy?

Do not torture your developers with

Old machines with small monitors

Disk space quotas

Outdated OS release

Bad software tools

Microsoft Paint vs. Photoshop for Web imaging

9

Joel Test: 12 Steps to better code

Test 10: Do you have testers?

UML bug free mythology

Reality: Every software coding effort is full of bugs

Bad design or bad implementation

Programmer does first test

JUnitJUnit

Dedicated tester check whole system or subsystem

Unbiased

Tries several scenarios and documents anomalies

Testing and coding should be interleaved

Write code, debug, test, write code, debug, test, …

10

Joel Test: 12 Steps to better code

Test 11: Do new candidates write code during
their interview?

No writing code == uncertain skills == uncertain
project member == uncertain project outcome

Resume is paper – you can put whatever you wantResume is paper – you can put whatever you want

Need to make candidates write code

Remove duplicates from a linked list

Sort data on an array

ICOM 4.0 GPA Students

Some of them cannot write code

They even evade ICOM 5016

11

Joel Test: 12 Steps to better code

Test 12: Do you do hallway usability testing?

If your co-workers have a hard time with your GUI
the user has no chance

Show people you UI and collect data on

Intuitiveness of UI

Problems with locations of buttons, menus, etc.

Issues with ease to find desired information

You can go to a more complex usability testing later
on

If you cannot convince your coworker you are in trouble

Redesigning the UI can be quite expensive

12

Software Products classification

Products can be classified as

Shrink wrap

Customized

Throwaway

Shrink wrap

Targeted to a general audience

Ex. MS Office, Photoshop, iTunes

Customized

Specific to a given user or industry

Ex. CESCO David, UPR PATSI, Universal Insurance Claims
Management

Throwaway

Internal code used to experiment with a given technology

Ex. Phase 1 and Phase 2 of ICOM 5016 Project
13

Shrink wrap Software

Used by a large number of people

Little control on how it is used

Sell at retail stored or over the Web

Develop and release it to the public

Bug fixed must be provided over Web

Scales well in terms of money

License issued to individual users

Should be able to recover cost with first N licenses

After that is all profit

Need to test and maintain aggressively

To continue selling it and making profit

Create loyal customer base

14

Customized software

Also called internal software

Used by people at a company or community

Smaller audience

More control on how it used

You can actually dictate requirements for usage

Develop and deploy to the company/communityDevelop and deploy to the company/community

Need to give them training

Often system is buggy and you need to keep fixing it

Less scale in term of profit

Contract-based: Once contract is over you get no money

Contracts then to be expensive (to account for profits vs loses)

Contract expiries and no more maintenance is given
Unless a maintenance contract gets setup

15

Software Products classification

Throwaway

Internal code used to experiment with a given
technology

Sometimes this is how to polish your specifications

Rapid prototype to figure out what you can and can’t do!

You want to use throwaway as a means to an
end

You do not sell throwaway software

Ex. Phase I and Phase II of ICOM 5016 project
Hardwired servlet code and in-memory DB is not use again

But you get Web-based UI and organization of beans right

16

Making money on software

Shrink wrap

Make a product that many people will use

Office, Photoshop, MS .Net, iWeb, MacOS

Companies: Microsoft, Apple, IBM, Adobe, Skype

Customized

Make a product that a big agency will useMake a product that a big agency will use

UPR PATSI, US Immigration Information System, US Postal Service

Companies: Rock Solid, EDS, IBM, HP

You should try to make shrinkwrap whenever possible

Only do customize to help you get cash to make another product

Shrink wrap is where you want to be

17

Part II: Procedural Issues

Software development is cyclic!

Old school water fall software development process
assures failure

You need to have constant testing and feedback
from the userfrom the user

UML will not produce code for you!

How do I specify a multi-threaded system with a
shared queue that controls access to a pool of disks?

UML is good to talk with others about your code

Like ER diagrams

Source code == real software specification

18

Cowboy Coding Model

You start writing code without an actual plan

Hacker’s way of doing things

I will start writing code and I will figure out things
along the way

Many ICOM Software Gurus work like thisMany ICOM Software Gurus work like this

You guarantee that the project will be

Late

Full of hard to understand code

Full of incompatibilities

Full of unusable features

Featuring a hard to use UI

19

Waterfall Model

Software is built in stepsSoftware is built in steps

One phase leads to the
next

If this phase is right the
next will likely be right ☺

20

Waterfall Model: Problems

In each phase you deal with a bunch of
uncertainties

Customer changes her mind about UI

You drop the ball with the design

Mixed data model with storage logicMixed data model with storage logic

Use multi-threaded when multi-process was better

You realize your platform has buggy support for
networking

Ex. PDAs!

Change is assured when building software

You need a way to make mid-flight course corrections

21

Reality in Software Development

At each step you might
need to revisit decisions
from previous phase

22

Rapid Application Development (RAD)

Build incomplete but functional prototype (like a demo!)

Debug and test major components

Involve customer by showing prototype

Nail down UI

Prevent change of accepted features …

Add features/fixes into prototype until you reach release Add features/fixes into prototype until you reach release
status

Hey, but finish the product!!!

Examples:

Agile Programming

Extreme Programming

SCRUM

23

Agile Programming

Family of techniques based upon

Inclusion of customer into design/development

Short cycle to produce working code (not all features)

Every few weeks a new version with a set of new features is
delivered

Test-Driven software developmentTest-Driven software development

First make the tests, then you write code that can pass them

Refactor code

Change code based on results of debugging, testing, and
user feedback

Produce stable release as results of continuous
improvement process

24

Extreme Programming

Based on daily
practices and team
values

Customer and
business people are business people are
part of the team

Always deliver a new
working version ASAP

Communicate
effectively with all
team members

25

XP Values

Simplicity

Write code that is simple, clean and straightforward

Communication

Keep direct communication between customers, developers,
business people and managers

FeedbackFeedback

Always comment on out other code, features, and issues

E.g., code reviews

Courage

Write the code! If you mess up just refactor

Avoid getting stuck in perfect implementation issues

26

XP Activities

Simple Design

Start with a simple system that works

Add new working features

Pair Programming

2 programmers work side by side on the same machine (like
Spartan kings)Spartan kings)

Faster, better code plus you have redundancy

Test-Driven Development

Unit test and full system tests as new features are added

Design Improvement

Refactoring – fix the design as you write code

You only know you are wrong when you see it

27

SCRUM

XP can be chaotic

Scrum is controlled chaos

The Team:

Scrum master

PM

Product OwnerProduct Owner

Customer and business people

Developers

Team works in sprints or burst of one month

Design, code, test and demo software

Next sprint adds features to previous release

Backlog of the spring list the features to do in each sprint

28

SCRUM Process

29

Software System Architecture

Start out by giving high level system
organization

Boxes and arrows

30

Client
Application

Database
Engine

Disk

Layered Software Design

Break down software
model into layer

Each layer is one or
more libraries with
specific role

Client API

Query Optimization

Query Processing

s
u
p
p
o
rt

specific role

31

Storage EngineT
x

s
u
p
p
o
rt

Disk

Each Layer is Simple

At this level you can lay down the classes

UML can help you illustrate structures and relations

32

Design Patterns

Well understood and documented recipes to
build software

Reusable code

Idea borrowed from architecture

Archetypes Archetypes

Columns, arcs, etc.

Smalltalk had them for GUI

Gang of Four Book (GoF) popularized design
patterns for CS

You should build your libraries around them

33

Example: Abstract Factory

You need to write an email client

Must run in

Windows XP and Vista

MacOS X

UbuntuUbuntu

Each one has a different look and feel

You do not want to write the different programs

Instead you want to share as much code as
possible

Only differentiate in how UI elements are created

34

Example: Abstract Factory

35

Questions?

36

